Human IFN-γ ELISpot Kit
Product Specifications
- Catalogue N°
- 856.051.001PC - 1 x 96 Discovery (pre-coated plate)
856.051.002PC - 2 x 96 (pre-coated plates)
856.051.005PC - 5 x 96 (pre-coated plates) - Target species
- Human
- Specificity
- Recognizes natural human IFN-g
- Incubation
- 3h after cell stimulation
- Cross Reaction
- No cross reactivity with other human cytokines. Cross reactivity with simian IFN-g.
- Kit Content
- Diaclone Pre-coated ELISpot kits include precoated PVDF plates, Detection antibody, Alkaline phosphatase conjugate, BSA, BCIP/NBT ready-to-use substrate buffer.
- Synonym
- IFN-g
- IFN-gamma
References
- Adotevi, O. et al., Clin Cancer Res.,2006; 12(10): 3158-67. - Pubmed link
- Alatrakchi N. et al., AIDS, 2002; 16(5): 713 - 717 - Pubmed link
- Almeida, J. R. et al.,Blood,2009; 113(25): 6351-6360. - Pubmed link
- Almeida, J. R. et al., J. Exp. Med.,2007; 204(10): 2473-2485. - Pubmed link
- Anguille, S. et al.,PLoS One,2012; 7(12): e51851 - Pubmed link
- Ascough, S. et al., J Infect.,2014;68(2):200-3 - Pubmed link
- Ascough, S.J. et al.,PLoS Pathog.,2014; 10(5): e1004085 - Pubmed link
- Ayyoub M. et al., J. Immunol., 2002; 168(4):1717 - 1722 - Pubmed link
- Ayyoub M. et al., J. Immunol., 2004; 172(11): 7206 - 7211 - Pubmed link
- Bain C. et al., J. Virol., 2004; 78(19):10460 - 10469 - Pubmed link
- Best, I. et al., Immunology,2009;128(1 Suppl):e777-86 - Pubmed link
- Beziaud, L. et al., Cancer Res.,2016;76(14):4100-4112 - Pubmed link
- Bolonaki, I. et al., J. Clin. Oncol.,2007; 25(19): 2727-2734. - Pubmed link
- Butt, N. M. et al., Haematologica,2005; 90(10): 1315-1323. - Pubmed link
- Calarota, S. A. et al., J. Immunol.,2008; 180(9): 5907-5915. - Pubmed link
- Calarota, S. A. et al.,Immunology,2013; 139(4): 533-44 - Pubmed link
- Chu, K. K. et al.,Eur J Immunol.,2011;41(1):107-15 - Pubmed link
- Codecasa, L. et al., J Clin Microbiol.,2006; 44(6): 1944-50. - Pubmed link
- Combadiere B. et al., J. Exp. Med., 2004; 199(11): 1585 - 1593 - Pubmed link
- Cools, N. et al., Mol Cancer,2006; 5: 49. - Pubmed link
- De Keersmaecker, B. et al., J. Leukoc. Biol.,2011;89(6):989-999 - Pubmed link
- Decrion, A. Z. et al.,Immunology,2007; 121(3): 405-15 - Pubmed link
- Dosset, M. et al., Clin Cancer Res., 2012; 18(22): 6284-95 - Pubmed link
- Drillien R. et al., J. gen. Virol., 2004; 85(Pt 8): 2167 - 2175 - Pubmed link
- Dufait, I. et al., Oncotarget,2015;6(14): 12369-82 - Pubmed link
- Elkord, E. et al., Int Immunol.,2005;17(10): 1315-25. - Pubmed link
- Elkord, E. et al.,Immunology,2005; 114(2): 204-12 - Pubmed link
- Farhi, D. et al.,Arch Dermatol.,2009; 145(1): 38-45 - Pubmed link
- Galaine, J. et al., J. Immunol.,2016 ; 197(5): 1597-1608 - Pubmed link
- Garcia-Castillo, M. D. et al., J. Cell Sci.,2015; 128(13): 2373-2387 - Pubmed link
- Gazagne A. et al., J. Immunol. Methods., 2003; 283(1-2): 91-98 - Pubmed link
- Godard B. et al., Hum. Immunol., 2004; 65(11): 1307-18 - Pubmed link
- Goovaerts, O. et al., PLoS One,2014;9(11):e113101 - Pubmed link
- Grafmueller, S. et al., The Journal of Infectious Disease, 2012; 205: 1142 - 1146 - Pubmed link
- Gupta, R. et al., Reprod Biol Endocrinol.,2009; 7: 38 - Pubmed link
- Hamdi, H. et al., Arthritis Res Ther.,2006; 8(4): R114 - Pubmed link
- Hoarau, J. J. et al.,PLoS One,2013; 8(12): e84695 - Pubmed link
- Hudak, S. et al., J Immunol.,2002;169(3): 1189-96. - Pubmed link
- Ingram, R. J.et al., J. Immunol.,2010;184(7): 3814-3821 - Pubmed link
- Junwei, W. et al., Cancer Cell Int.,2016; 17: 10. - Pubmed link
- Kalogerakou, F. et al.,Hippokratia,2008; 12(4): 230-5. - Pubmed link
- Kotsakis, A. et al., Ann. Onc., 2012; 23: 442 - 449 - Pubmed link
- Laheurte, C. et al.,Oncoimmunology, 2016 May; 5(5): e1137416 - Pubmed link
- Li, T. et al., PLoS One,2006; 1: e24. - Pubmed link
- Lisziewicz, J. et al.,PLoS One,2012; 7(5): e35416 - Pubmed link
- Lomas M. et al., Ann. Onc., 2004; 15(2): 324 - 329 - Pubmed link
- Lu, S. Y. et al., World J Gastroenterol.,2004; 10(1): 53-7. - Pubmed link
- Lu, Z. Y. et al.,Exp Hematol.,2007;35(3):443-53 - Pubmed link
- Mantegani, P. et al., Clin Med Res.,2006; 4(4): 266-72. - Pubmed link
- Martinez, V. et al., BMC Infect Dis.,2007;7: 83 - Pubmed link
- Montcuquet, N. et al., Immunology,2008;125(3): 320-30. - Pubmed link
- Nicholas, R. S. et al., BMC Neurol.2015; 15: 72 - Pubmed link
- Petanidis, S. et al., PLoS One,2013;8(9):e73616 - Pubmed link
- Pittet M. J. et al., J. Immunol., 2001; 166(12): 7634- 7640 - Pubmed link
- Puissant-Lubrano, B. et al., J Clin Invest.,2010; 120(5): 1636-44. - Pubmed link
- Purbhoo, M. A. et al., J Immunol., 2006; 176(12): 7308-16. - Pubmed link
- Purbhoo, M. A. et al., Mol. Cancer Ther.,2007; 6(7): 2081-2091. - Pubmed link
- Rinaldi, M. et al.,Thorax, 2012; 10.1136/thoraxjnl-2011-200690 - Pubmed link
- Rozieres, A. et al., Allergy,2009;64(4):534-42 - Pubmed link
- Rubio-Godoy, V. et al., Proc Natl Acad Sci.,2001;98(18): 10302-7. - Pubmed link
- Saito, N. et al., Science Translational Medicine,2014; 6(245): 245ra95- - Pubmed link
- Samri, A. et al., Clin Vaccine Immunol.,2006; 13(6): 684-97. - Pubmed link
- Sauce D. et al., Blood, 2002; 99(4) : 1165 - 1173 - Pubmed link
- Sauce D. et al., Blood, 2003; 102(4): 1241 - 1244 - Pubmed link
- Schaubert, K. L. et al., J. Immunol.,2007; 178(12): 7756-7766. - Pubmed link
- Silva, B. C. et al. , Mem Inst Oswaldo Cruz,2014; 109(8): 999-1004 - Pubmed link
- Sun Y. et al., J. Immunol. Methods, 2003; 272(1-2): 23 - 34 - Pubmed link
- Van Craenenbroeck, A. H. et al., Transplantation,2015;99(1):120-7 - Pubmed link
- Van Gulck, E. et al., PLoS One,2012; 7(5): e37792 - Pubmed link
- Van Gulck, E. et al.,Clin Dev Immunol., 2012: 184979 - Pubmed link
- Van Gulck, E. R. et al, J. Virol,2008; 82(7): 3561-3573. - Pubmed link
- Van Gulck, E. R. et al., Blood,2006; 107(5): 1818-27. - Pubmed link
- Voelter, V. et al., Int. Immunol.,2008; 20(8): 1087-1096. - Pubmed link
- Walton, S. M. et al., J Immunol.,2006;177(11): 8212-8. - Pubmed link
- Wei, J. et al., J Gen Virol.,2006; 87(Pt 11): 3393-6. - Pubmed link
- Weiss, L. et al.,PLoS One,2010; 5(7): e11659 - Pubmed link
- Zhang, Y. et al.,PLoS One,2015; 10(5): e0126075 - Pubmed link
- Kroemer, M. et al., The Journal of infection vol. 82,2 (2021): 282-327. doi:10.1016/j.jinf.2020.08.036 - Pubmed link
- Kroemer, M. et al., Oncoimmunology vol. 7,4 e1412030. 17 Jan. 2018, doi:10.1080/2162402X.2017.1412030 - Pubmed link
- De Keersmaecker, B. et al., J Immunother Cancer. 2020; 8(1): e000329. - Pubmed link
- Zavattoni, M. et al., Microorganisms. 2020 Jan; 8(1): 56. - Pubmed link
- Malard, F. et al., Blood Cancer J. 2021 Aug; 11(8): 142. - Pubmed link
- Cassaniti, I. et al., Vaccines (Basel) 2022 Jun; 10(6): 921. - Pubmed link
Related products
- 855.000.000 - Anti-Human IFN-γ Azide Free
- 855.001.019 - Anti-Human IFN-γ FITC Conjugated
- 855.002.019 - Anti-Human IFN-γ PE Conjugated
- 879.000.001 - Anti-Human IFN-γ Capture Antibody
- 879.000.002 - Anti-Human IFN-γ Detection Antibody
- 850.900.048 - Human IFN-γ High Sensitivity ELISA Kit
- 860.050.048 - Murine IFN-γ ELISA Kit
- 865.010.048 - Rat IFN-γ ELISA Kit
- 950.000.048 - Human IFN-γ ELISA Kit
- 851.560.001 - Human IFN-γ ELISA Set
- 861.050.001 - Murine IFN-γ ELISA Set
- 872.000.001 - Rat IFN-γ ELISA Set
- 856.051.001 - Human IFN-γ ELISpot Set
- 862.031.001 - Murine IFN-γ ELISpot Set
- 862.031.001PC - Murine IFN-γ ELISpot Kit
- 867.011.001 - Rat IFN-γ ELISpot Set
- 867.011.001PC - Rat IFN-γ ELISpot Kit
- 869.060.010 - Human IFN-γ ELISpot Pair
- 870.050.010 - Murine IFN-γ ELISpot Pair
- 871.020.010 - Rat IFN-γ ELISpot Pair
- 853.670.000 - Anti-Human IFN-γ Azide Free
- 856.051.001PCS - Human IFN-γ EasySplit ELISpot Kit
- 862.031.001PCS - Murine IFN-γ EasySplit ELISpot Kit
BACKGROUND
Interferon-gamma (IFN-γ, IFN-g, IFN gamma), also known as type II or immune interferon, is a dimerized soluble cytokine.
Interferon gamma is produced mainly by activated T cells and Natural Killer cells as part of the innate immune response, and by CD4 Th1 and CD8 cytotoxic T lymphocyte (CTL) effector T cells once antigen-specific immunity develops. IFN gamma is also produced by non-cytotoxic innate lymphoid cells (ILC), a family of immune cells first discovered in the early 2010s
IFNg is considered to be a proinflammatory cytokine, that activates macrophages and endothelial cells, it also regulates immune responses by effecting APC, and T cells.
IFN gamma is a cytokine that is critical for innate and adaptive immunity against viral, some bacterial and protozoal infections. IFN gamma is an important activator of macrophages and inducer of Class II major histocompatibility complex (MHC) molecule expression. Aberrant IFNγ expression is associated with a number of autoinflammatory and autoimmune diseases. The importance of IFNγ in the immune system stems in part from its ability to inhibit viral replication directly, and most importantly from its immunostimulatory and immunomodulatory effects.
Different populations of T-cells secrete differing patterns of cytokines that ultimately lead to different immune responses. IFNγ production is a key function of Th1, CD8+ CTLs and also NK cells. It is a cytokine critical for cell mediated immunity against viral and intracellular bacterial infections and is involved in the inflammatory response following secretion via macrophage activation and stimulation of antibody secretion. IFN is the hallmark effector cytokine of Th1 and therefore is an excellent marker for identifying a host response to intracellular pathogens.
IFN is produced during infection by T cells of the cytotoxic/suppressor phenotype (CD8) and by a subtype of helper T cells, the Th1 cells. Th1 cells secrete IL-2, IL-3, TNFα and IFNγ, whereas Th2 cells mainly produce IL-3, IL-4, IL-5, and IL-10, but little or no IFNγ. IFNγ preferentially inhibits the proliferation of Th2 but not Th1 cells, indicating that the presence of IFNγ during an immune response will result in the preferential proliferation of Th1 cells.
In addition, IFNγ has several properties related to immunoregulation. IFNγ is a potent activator of mononuclear phagocytes, and activates macrophages to kill tumor cells by releasing reactive oxygen intermediates and TNFα. IFNγ induces or augments the expression of MHC antigens on macrophages, T and B cells and some tumor cell lines. On T and B cells IFNγ promotes differentiation. It enhances proliferation of activated B cells and can act synergistically with IL-2 to increase immunoglobulin light-chain synthesis.
The role of IFNγ as a disease marker has been demonstrated for a number of different pathological situations including, viral infection, autoimmune disease, transplant rejection, diabetes and allergy.
Version 19 - 09.22
For research use only
For any order, the purchaser acknowledges having read and accepted the terms and conditions described on the Diaclone website.